A Virus Speeding Up Modern Computing
enterprisenetworkingmag

A Virus Speeding Up Modern Computing

By Enterprise Networking Mag | Monday, January 21, 2019

With computing, the world is pushed to new frontiers of digital technology. Studies have announced that a successfully developed version in computer speed and efficiency, that is a method to make a biological patterning for non-volatile memory technology using the virus. The current computer memory is not seamless.

The study explains that faster computers can be a reality through lessening millisecond time delays that usually come from the transfer and storage of information between the conventional random access memory chip and the hardware. Phase change memory comes into play here. It is a type of non-volatile random access memory that stores data by altering the state of the matter from which device is fabricated. It has the potential to provide inexpensive, high speed, high density, high volume storage on an unprecedented scale. This memory technology can switch between amorphous and crystalline states.

There are considerable constraints for the use of this technology. The particular type of material needed is a separable material producing high energy consumption and undergoes material separation at 620 Kelvin. This makes it difficult to incorporate it into current integrated circuits, where the transfer and storage take place. This was the major pain point faced by the researchers. The conventional process of making tiny wires results in a high temperature, a heat that corrupts the separable material for the quick transfer and storage delays.

Check out: Most Promising Networking Solution Providers - 2018(Acalvio, Arrcus, Inc., IOvations, Sea Street Inc.)

But researchers showed that using the M13 bacteriophage, commonly known as a virus can take advantage of the electrostatic aggregation instead of heating at the high temperature of the semiconductor substrate. That is a low-temperature construction of tiny phase change wires and memory can be achieved.

This achievement leads the way to the nanosecond storage and transfer delays needed to progress modern computing. It even paves the way for the lightning-quick supercomputers becoming a reality.

Check Out: Semiconductor Review

Weekly Brief

Read Also